Transductive LSI for Short Text Classification Problems

نویسنده

  • Sarah Zelikovitz
چکیده

This paper presents work that uses Transductive Latent Semantic Indexing (LSI) for text classification. In addition to relying on labeled training data, we improve classification accuracy by incorporating the set of test examples in the classification process. Rather than performing LSI’s singular value decomposition (SVD) process solely on the training data, we instead use an expanded term-by-document matrix that includes both the labeled data as well as any available test examples. We report the performance of LSI on data sets both with and without the inclusion of the test examples, and we show that tailoring the SVD process to the test examples can be even more useful than adding additional training data. The test set can be a useful tool to combat the possible inclusion of unrelated data in the original corpus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating Latent Semantic Indexing into Spectral Graph Transducer for Text Classification

Spectral Graph Transducer(SGT) is one of the superior graph-based transductive learning methods for classification. As for the Spectral Graph Transducer algorithm, a good graph representation for data to be processed is very important. In this paper, we try to incorporate Latent Semantic Indexing(LSI) into SGT for text classification. Firstly, we exploit LSI to represent documents as vectors in...

متن کامل

Sprinkled Latent Semantic Indexing for Text Classification with Background Knowledge

In text classification, one key problem is its inherent dichotomy of polysemy and synonym; the other problem is the insufficient usage of abundant useful, but unlabeled text documents. Targeting on solving these problems, we incorporate a sprinkling Latent Semantic Indexing (LSI) with background knowledge for text classification. The motivation comes from: 1) LSI is a popular technique for info...

متن کامل

A Latent Semantic Structure Model for Text Classification

Latent Semantic Indexing (LSI) has been successfully applied to information retrieval and classification. LSI can deal with the problems of polysemy and synonymy, and can reduce noise in the raw document-term matrix. However, LSI may ignore important features for some small categories because they are not the most important features for all the document collection. In this paper, we describe a ...

متن کامل

LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier

The task of Text Classification (TC) is to automatically assign natural language texts with thematic categories from a predefined category set. And Latent Semantic Indexing (LSI) is a well known technique in Information Retrieval, especially in dealing with polysemy (one word can have different meanings) and synonymy (different words are used to describe the same concept), but it is not an opti...

متن کامل

A comparative study of TF*IDF, LSI and multi-words for text classification

One of the main themes in text mining is text representation, which is fundamental and indispensable for text-based intellegent information processing. Generally, text representation inludes two tasks: indexing and weighting. This paper has comparatively studied TF IDF, LSI and multi-word for text representation. We used a Chinese and an English document collection to respectively evaluate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004